Note on Malicious Software

For use with session on

INTERNET SECURITY – OPPORTUNITY OR OXYMORON

Technology Review and Update

TRAU 2000

Naval Postgraduate School

Monterey, California

Dr. Roger R. Schell

 schellr@alum.mit.edu

24 April 2000

Probing with Malicious Software

This computer misuse technique involves using a computer system in ways that are allowed, but not necessarily intended. With this technique specially developed software is employed by the attacker for the express purpose of carrying out the probing. The use of such malicious software in probing makes this technique unique and significant.

The Trojan Horse

Ancient Greek mythology supplies us with the story of the Trojan horse which when brought within the fortified walls of troy, opened to reveal hostile Athenian soldiers who attacked the city's defenses from within. The term Trojan horse for software is widely attributed to Daniel Edwards [SALT75], an early computer security pioneer, and it has become standard in computer security. As with its mythological counterpart, it signifies a technique for attacking a system from within, rather than staging a frontal assault on well-maintained barriers; however, it does so without circumventing normal system controls (in the same manner in which the Trojans opened the doors of the city to bring in the horse). A Trojan horse is a program whose execution results in undesired side effects, generally unanticipated by the user. A Trojan horse will most often appear to provide some desired or "normal" function. In other words, a Trojan horse will generally have both an overt function -- to serve as a lure to attract the program into use by an unsuspecting user -- and a covert function to perform clandestine activities.

The overt or "lure" function of a Trojan horse can, for example, be mathematical library routines, word processing programs, computer games (e.g., Backgammon, Adventure), compilers, or any program that might be widely used at an installation. Because these programs are executing on behalf of the user they assume all access privileges that the user has. This allows the covert function access to any information that is available to the user.

The covert function is exercised concurrently with the lure function. An example of this kind of malicious software might be a text editor program that legitimately performs editing functions for the unsuspecting user while browsing through his directories looking for interesting files to copy. Attackers have used seemingly harmless computer games (viz. Backgammon) to set all of the player's files to "world read" so the game's author can copy the files without the knowledge of the files' owner.

This is a particularly effective option for the attacker due to the fact that as far as any internal protection mechanism of the computer system is concerned there is no "illegal" actions in progress. The Trojan horse (e.g., text editor) is simply a user program, executing in user address space, accessing user files, performing perfectly legitimate system service requests such as giving another user (e.g., the attacker) a copy of his files.

An example comes from the security test of an Air Force system that was used to process sensitive information in the early seventies. The installation in question was processing classified magnetic tapes using a computer and operating system that were widely known for the ease with which a hostile individual could access any information processed. The installation's solution was to use only a selected set of programs to process the classified tapes, while any user was allowed to submit any Unclassified program that he or she wished. The programs used to process the classified tapes not only did the requisite processing, but also took special precautions to label the classified information that appeared on the line printers. They even erased the main memory areas that had been used to store the sensitive data before terminating processing and returning the memory areas to the operating system for reallocation.

A security test team (a "tiger team") realized that the classified processing programs could be used to ease the attacker's job. By exploiting the operating system weaknesses in order to access it, they modified the program used to print the contents of a classified magnetic tape to serve as a Trojan horse. The Trojan horse program completed the print job when requested, but also hid a copy of the classified data, lightly encrypted, in an "invisible" location on disk. A later unclassified job could be submitted to read the hidden data, print it out (still encrypted) for a member of the tiger team and erase the hidden copy. In this case, a security solution actually made a security problem worse, since the use of the classified processing programs served to locate and save for the tiger team exactly those files and jobs that they wished to steal.

To reinforce the subtle nature of Trojan horses and the reality of the opportunities to plant them, the interested reader should read the story [THOM84] by Ken Thompson, one of the codevelopers of UNIX, of what he describes as "the cutest program {he} ever wrote." This program is a Trojan horse which he introduced into the C compiler. When the Trojan horse in the C compiler determined that it was compiling the "login" code for the UNIX operating system, it would generate code to accept not only the valid password but also a fixed password that he had previously selected and built into the Trojan horse. He also planted another Trojan horse in the compiler. This Trojan horse added the code for the two Trojan horses to the object code each time it recompiled subsequent versions of the compiler, without the Trojan horse code having to be present in the compiler source code. In this way, he was able to cover his tracks for years, while his employer possibly continued to unknowingly crank out copies of the operating system and compiler containing his Trojan horses.

While our stable full of Trojan horses may seem quite different from the network Adventure or password exploitation cited above, there is a technical point that all three cases hold in common. That is, just as one can guess a password or read an unprotected file without doing violence to the mechanism of the underlying computer and operating system, one can install a Trojan horse in a program that will be used by an intended victim, and that Trojan horse can function within the normal rules and mechanisms of the computer and its operating system. By issuing operating system directives to reset the access controls on a file or make a new copy, the Trojan horse can take advantage of standard mechanisms to do its dirty work without detection.

Two things make Trojan horses particularly attractive to the hostile attacker. First, as a practical matter, there is no effective procedure for detecting if a piece of software contains a Trojan horse, especially if the designer devoted a reasonable effort to hide it. Second, almost all computer users are compelled to use software (e.g., operating systems and application programs) developed by persons completely unknown to the user; the route this software takes to the user provides numerous opportunities for insertion of a Trojan horse.

Viruses, Time Bombs, Logic Bombs, and Worms

These four eye-catching names have received some notoriety in the popular press in the past few years. Actually, these are four types of Trojan horses, with special characteristics.

A "virus" is a self-replicating Trojan horse that attaches itself to other programs in order to be executed. This method of self-replication by attaching to another program in order to be executed is the primary distinguishing feature of a virus. The primary covert function of some viruses may be simply to replicate and spread, performing no other harmful action. However, others may take such actions as to modify, copy, or destroy other files or entire disks. Viruses are carried from one personal computer to another by unsuspecting users sharing software which has already been infected. They spread between other computer systems in a similar manner via networks. Note that a virus's method of replication by attaching itself to another program is, in itself, an unauthorized modification of data (the program to which it attached).

Since each copy of a virus may replicate itself, a virus's ability to spread quickly is one of its most distinctive qualities. For example, suppose one copy of a virus is introduced into a system through the execution of an infected text editor. If that virus is able to attach itself to a new program just once per day, and each of its copies does likewise, after a week, there will be more than 50 copies; after about a month, there will be around a billion copies. Although this is not our serious prediction, it is interesting to note that at the rate currently identified viruses seem to be spreading, in a yebar or so every computer in existence could potentially have a virus. (Do not be overly frightened however, the technology for arresting Trojan horses exists; it is only necessary to employ it.)

A "time bomb" is simply a Trojan horse set to trigger at a particular time. For example, time bombs have been set to trigger on "Friday the 13th" and on the anniversary of events that were significant to the attacker.

A "logic bomb" is a Trojan horse set to trigger upon the occurrence of a particular logical event. For example, the Trojan horse might be set to trigger at the worst possible time -- an event such as the need to correct a temperature imbalance within a power plant might be used as the trigger for a logic bomb that modifies data in such a manner as to make the imbalance worse. Another example of a logic bomb is a "letter bomb" -- contained in electronic mail and triggered when the mail is read.

Another form of Trojan horse is known as a "worm". A worm is a program that distributes multiple copies of itself within a system or across a distributed system either through the exercise of a flaw that permits it to spread or through normally permitted actions (e.g., mailing copies of itself to other systems, compiling them on the remote system, and initiating their execution). Once in place, the worm may attack in any number of ways, through the methods described above or in the paragraphs below. A good example of a worm in action is described in [SPAF89]. This worm is called the "Internet Worm"; it invaded a large, nationwide network of computers called the "Internet," spreading to thousands of machines and disrupting normal activities and connectivity of the machines for several days. Fortunately, the primary objective of this worm was simply to spread to more machines, rather than to do any particular damage once it was established on a new machine, or the damage would have been far more significant.

Subversion of Security Mechanism

Subversion of a computer system's security mechanism involves the covert and methodical undermining of internal system controls to allow unauthorized and undetected access to information within the computer system. Such subversion is not limited to on-site operations, as in the case of deliberate penetration. It includes activities that spread over the entire life cycle of a computer system, including (1) design, (2) implementation, (3) distribution, (4) installation, and (5) use.

The legitimate activities that are carried on during the various life cycle phases offer ample opportunities for the subverter to undermine system components. The activities in the first four life-cycle phases identified above are basically not sensitive in nature and are carried out at relatively open facilities. Therefore the subverter would have little difficulty in subverting the system components under development. Later in the use phase, these same components would be involved in the protection of information. By this phase the subverter would have an "environment" purposefully constructed for the unauthorized and undetected exploitation of a system and the information it contains.

The subverter is not an amateur. To be able to carry out subversive operations, the subverter must understand the activities that are performed during the various phases of a computer system's life cycle. But none of these activities are beyond the skill range of the average undergraduate computer science major. In fact, much of the activity involved with subversion can be carried out by individuals of much less technical knowledge. The subverter can utilize a diverse group of individuals that may or may not be aware of the subversive activities they are performing. One need only imagine the vast number of people that will have access to the various computer system components prior to their being installed at a site with sensitive information.

The subverter could, and undoubtedly would, use various methods to circumvent the control features of a computer system. But the subverter is concerned with the long term return on his subversive efforts. To rely on a design oversight or an implementation flaw that might be eventually corrected would not be sound "business" practice. Rather the subverter constructs his own clandestine mechanisms that are inserted into the controlling hardware or software during one of the various phases of a computer systems life cycle. Such clandestine mechanisms have historically been called artifices [LACK74]. These artifices can be implemented as either malicious hardware or software. The most common forms of artifices used in subversion are known as "trap doors" [KARG74].

Therefore, a key characteristic of a trap door is that, since it is installed within the controlling portion of the system (e.g., operating system) and is therefore capable, it circumvents the normal control features of a system. Another key characteristic is that a trap door is exercised under the direct control of an activation stimulus.

As the name implies, trap doors have a means of activation (like the latch on a door). This activation key is under the direct control of the attacker. A simple example of an activation key is a special sequence of characters that is typed into a terminal. A software trap door program, embedded in the operating system code, can recognize this key and allow the user of the terminal special privileges. This is done by the software circumventing the normal control features of the system. It is important to realize that the only purpose of a trap door is to "bypass" internal controls. It is up to the attacker to determine how this circumvention of control can be utilized for his benefit.

Undetectable Trap Door

The attacker can construct the trap door in such a manner as to make it virtually undetectable to even suspecting investigators. The penetration of the M.I.T. Multics computer by the tiger team that was described in [KARG74] led to further demonstrations of the significance of their work. Specifically, they installed a small trap door that was so undetectable that the manufacturers personnel could not find the clandestine code, even when they were told it existed and how it worked.

The Multics system internally encrypted its password list so that even if the list was printed out, the passwords were not intelligible. When a user presented his or her password, it was encrypted and then compared to the user's entry in the encrypted list. The tiger team retrieved the encrypted password list, then broke the cipher at their leisure to obtain all of the passwords for M.I.T.'s Multics computer system. The M.I.T. Multics computer was used as the development site for future versions of the Multics operating system.

The tiger team modified Honeywell's master copy of the Multics operating system by installing a “trap door”: a set of instructions to bypass the normal security checks and thus ensure penetration even after the initial flaw was fixed. The trap door was small (fewer than ten instructions out of about 100,000) and required a coded password for use. The manufacturer could not find it, even when he knew it existed and how it worked. Furthermore, since the trap door was inserted in the master copy of the operating system, the manufacturer automatically distributed the trap door to all Multics installations. Multics kept an "audit trail" of accesses to files by users. The tiger team's activities were duly audited. However, the audit trail mechanism itself was subject to "repair" by an authorized system manager. Since the tiger team appeared to be the system manager, they merely had to modify the record to remove all traces of their actions, such as the insertion of the trap door.

The full effect of the tiger team's project was eventually demonstrated to Honeywell and Air Force management and a series of projects were initiated to improve the system's security to allow it to be used in the Pentagon application. Of perhaps as much interest, though, are the depth and breadth of the impact that the tiger team's penetration and subversion had on the system's security.

The key point that distinguishes this subversion from the other forms of attacks described above is that the tiger team examined the mechanisms used to provide operating system security, then installed permanent artifices to bypass them all. Once the team had done that, they were able to access any information in the system repeatedly and undetectably, despite later efforts that might close the initial vulnerability they exploited.

A Hardware Trap Door

A major concern in computer security during the late sixties and early seventies dealt with security-related hardware flaws. There was a fear in that era that processor hardware might fail in such a way that the processor would keep running but that security-related hardware checks would no longer be made. For example the failed hardware might allow a privileged instruction to be executed from a user program. The people who hypothesized the problem also invented a form of solution: an unprivileged, interactive program they called "Subverter" would check periodically to see if any security-related hardware failures had occurred and, if they had, sound a suitable alarm.

The tiger team that penetrated Multics developed the Subverter program to check for flaws in the Multics processor. This program would awaken once every minute or so and try a few illegal operations, then go back to sleep. The illegal operations ranged from commonplace to obscure, and were chosen to invoke the complexity of the Multics processor hardware. These tests included:

1. Trying to run privileged instructions; 2. attempting to violate read and write permission on segments; 3. testing of all instructions marked illegal; and 4. taking out-of-bounds faults on zero length segments.

During several hundred hours of execution while the tiger team's members were using Multics, Subverter never detected a security-related hardware failure. When the hardware broke, the system went down and there was no opportunity for subtle security exploitation. The tiger team did, however, discover that Subverter would occasionally crash without apparent cause.

On investigation, it became clear that Subverter was crashing because its read-only program segment was being modified. The test case that Subverter used for illegal memory access was to try to write in itself, and in these cases it was succeeding. The cause was traced to a test that used a combination of register, indexed, and indirect addressing that spanned several of the segments that make up a Multics process' virtual memory. When the locations involved met certain requirements (one indirect address word had to be in location three of a specific segment in the address chain) the instruction that started the operation would succeed without regard to the process' access rights for the final target address. When the target address was in the read-only Subverter code segment, Subverter "clobbered itself".

The flaw that allowed Subverter to write in itself was not random. Every time the combination of addressing modes involved was used, the problem would occur. It could in fact be used to write anywhere in virtual memory on any Multics processor. Thus the hardware flaw was as exploitable from a security penetration standpoint as any of the flaws in the operating system. It was a speculation that there might be such a flaw that caused the tiger team to write Subverter so that it emphasized the testing of obscure and complex instructions and addressing modes. The flaw was found to have been introduced by a field change to the processor that had the side effect of removing a special case security check.

The implications of the Multics hardware vulnerability are as frightening as those of the software flaws. The designer of a secure operating system usually assumes a known hardware base. In this case, the hardware was "almost" what was expected, but the difference was capable of rendering the system's controls ineffective. The prospect for maliciously installed trap doors is presumably as great in hardware as in operating system software. It is arguable that, given the complexity of modern integrated circuits, such trap doors are even harder to find than their software brethren. While the tiger team's Subverter program described above was designed to find such an obscure case, all involved acknowledged that there was a certain amount of luck in the fact that the case of interest was one that Subverter tested in a finite amount of time.

References

 [KARG74] Karger, P. A. and R. R. Schell, Multics Security Evaluation: Vulnerability Analysis, ESD-TR-74-193, Vol. 2, Hanscom AFB, MA, 1974 (also available as NTIS AD-A001120).

[LACK74] Lackey, R.D., "Penetration of Computer Systems, an Overview", Honeywell Computer Journal, Vol. 8, No. 2, 1974.

 [SALT75] Saltzer, J. H. and M. D. Schroeder, "The Protection of Information in Computer Systems," Proceedings of the IEEE, Vol. 63, No. 9, September 1975, pp. 1278-1308.

 [SPAF89] Spafford, E. H., "The Internet Worm: Crisis and Aftermath," Communications of the ACM, Vol. 32, No. 6, June, 1989, pp. 678- 688.

[THOM84] Thompson, K., "Reflections on Trusting Trust" (1983 Turing Award Lecture), Communications of the ACM, Vol. 27, No. 8, August 1984, pp. 761-763.

